Overview

Mechanism of Analgesic Effect on Prolonged Continuous Theta Burst Stimulation

Status:
Not yet recruiting
Trial end date:
2022-12-31
Target enrollment:
Participant gender:
Summary
It has been shown that prolonged continuous theta burst stimulation (pcTBS) , a relatively new repetitive transcranial magnetic simulation (rTMS) protocol, of the primary motor cortex (M1) or dorsolateral prefrontal cortex (DLPFC) decreases pain in healthy volunteers, in various experimental models. In addition, rTMS of M1 has also been shown to have analgesic effects in various chronic pain conditions, including neuropathic pain.The mechanisms underlying rTMS-induced analgesia remain unclear. Functional neuroimaging studies have shown that rTMS of M1 and DLPFC induces changes in the activity of cortical and subcortical structures involved in pain processing and modulation. Endogenous opioids and e N-methyl-D-aspartate (NMDA) receptor are known to play a major role in these processes. The investigator hypothesized that the endogenous opioids systems (EOS) and NMDA receptor might be involved in the analgesic action of pcTBS. In the first part,the investigator compares the analgesic effects of motor cortex (M1) or dorsolateral prefrontal cortex (DLPFC) stimulation before and after naloxone or placebo treatment, the intensity of pain induced by capsaicin were used to evaluate the analgesic effects of pcTBS. If naloxone does not reverse the analgesic effect of pcTBS,The volunteers will be invited to participant the second part of the study, which the investigator compares the analgesic effects of motor cortex (M1) or dorsolateral prefrontal cortex (DLPFC) stimulation before and after Ketamine treatment.
Phase:
N/A
Details
Lead Sponsor:
Second Affiliated Hospital, School of Medicine, Zhejiang University
Treatments:
Ketamine
Naloxone